
PERIOD AND ENERGY
IN ONE DEGREE OF FREEDOM SYSTEMS

JORGE REZENDE

A. For one degree of freedom systems there exists a very well
known formula for the period (T) of periodic solutions. In this note we
give a detailed description of the behavior ofT in function of the total
energy (E), near a stable equilibrium position of energyE0. A formula for
dT
dE(E0) is established. We illustrate these formulae with two examples. The
second one is a new proof of a Bertrand’s theorem.

1. I

As it is very well known, a system with one degree of freedom is a differ-
ential equation of the form

(1) mẍ = −U′ (x) ,

wherem > 0, U, the potential, is a smooth function ofx, defined in a real
interval, and ¨x ≡ d2x

dt2 , U′ ≡ dU
dx . Equation (1) is nothing more than a Newton’s

equation of motion in one dimension. We follow essentially [1].
If t 7→ x(t) is a solution of (1), then

E ≡ E (x (t) , ẋ (t)) =
m
2

ẋ (t)2 + U (x (t)) ,

the energy, is constant.
Let ξ be such thatU′ (ξ) = 0. Then,ξ is called an equilibrium position;

t 7→ x (t) ≡ ξ is a solution of (1). We shall assume thatU′′ (ξ) > 0, which
implies thatξ is a stable equilibrium position. DenoteE0 = E (ξ,0).

Under the above assumption, forE near and> E0, there are periodic move-
mentst 7→ x (t) aroundξ and of energyE. The periodT of such movements
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is given by

(2) T (E) = 2
∫ x2

x1

[
2
m

(E − U (x))

]− 1
2

dx,

wherexi ≡ xi (E) are the turning points,U (xi (E)) = E, i = 1,2.
In the limit E→ E0 one obtains the well known formula

T (E0) ≡ lim
E→E0

T (E) = 2π

[
1
m

U′′ (ξ)

]− 1
2

.

The object of this note is to study the behavior ofT (E) aroundE0 (formula
(3)) and computedT

dE (E0) (formula (4)).
In order to illustrate the usefulness of this formula we give two examples.

The second one is another proof of a well known result on the types of central
forces that lead to periodic movements only.

2. T   T (E)    

Assume thatU is of classCn, n ≥ 2, and thatU′′ > 0 in [x1, x2]. Define the
functionx 7→ X = ϕ (x), for x ∈ [x1, x2], such that

ϕ (x) = ±

√
2(U (x) − E0)

U′′ (ξ)
,

where+ stands forx ≥ ξ and− stands forx ≤ ξ; ϕ is of classCn−1 and
ϕ′ (x) = U′′ (ξ2) (U′′ (ξ) U′′ (ξ1))

− 1
2 > 0, with ξ1 and ξ2 betweenξ and x.

Denote[−X0,X0] = ϕ ([x1, x2]) and consider the functionf : [−X0,X0] → R,
such that

f (X) =
1

ϕ′
(
ϕ−1 (X)

) .

The functionf is of classCn−2. Denotef ′ (X) = d f(X)
dX , f ′′ (X) = d2 f (X)

dX2 , and

so on. Forn ≥ 4, and asU′′ (ξ) X = U′
(
ϕ−1 (X)

)
f (X), one has

f (0) = 1, f ′ (0) = −
U′′′ (ξ)
3U′′ (ξ)

, f ′′ (0) =
5U′′′ (ξ)2

− 3U (4) (ξ) U′′ (ξ)

12U′′ (ξ)2
.

Formula (2) can be written

T (E) = 2
∫ X0

−X0

f (X)

[
1
m

(
2(E − E0) − U′′ (ξ) X2

)]− 1
2

dX.

Writing f (X) = 1+ f ′ (0) X + 1
2 f ′′ (θ) X2, for someθ ∈ ]−X0,X0[, and as∫ X0

−X0

X2

[
1
m

(
2(E − E0) − U′′ (ξ) X2

)]− 1
2

dX =
π
√

m

U′′ (ξ)
3
2

(E − E0) ,
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one has

(3) T (E) − T (E0) = σ
π
√

m

U′′ (ξ)
3
2

(E − E0) ,

for someσ ∈ f ′′ ([−X0,X0]).
Hence

(4)

T′ (E0) ≡
dT
dE

(E0) = f ′′ (0)
π
√

m

U′′ (ξ)
3
2

= π
√

m

5U′′′ (ξ)2
− 3U (4) (ξ) U′′ (ξ)

12U′′ (ξ)
7
2

 .

Example 1. Consider a mathematical pendulum of length l under the free
fall acceleration g. The potential is U(x) = −g

l cosx, where x is the angle of
deviation of the pendulum from the vertical.

In this caseϕ (x) = 2 sin x
2 and f (X) = 2

(
4− X2

)− 1
2 . Simple calculations

show that formula(3) becomes

T (E) − T (E0) = 2σπ

√
l
g

(
sin

x0

2

)2

, for someσ ∈

1
4
,
1+ 2

(
sin x0

2

)2

4
(
cosx0

2

)5

 ,

where x0 is the maximum deviation angle.

Example 2. The following example is another proof of a Bertrand’s theorem.
We follow partially[1], Chapter 2,§ 8.D. See also[2], page 51 and[4], page
90. The original proof is in[3].

Let U be the potential of a central force,µ the angular momentum and
V the effective potential, V(r) = U (r) + µ2

2mr2 , where t 7→ r (t) is the radial
movement. Assume that there are periodic radial movements and that r0 is
a minimum for V. Then t7→ r0 is a stable circular orbit. Let t7→ r (t) be a
periodic radial movement,Φ the angle between a pericenter and an apocenter
which are adjacent and let r1 and r2 be the distances from the pericenters and
the apocenters to the center of the field, r1 < r0 < r2. Making the change
x = 1

r , x1 =
1
r1

, x2 =
1
r2

, x0 =
1
r0

, W (x) = U
(

1
x

)
+
µ2

2mx2, one hasΦ = µ

2
√

m
T (E),

where T(E) is as in(2) with U replaced by W and m by1. As in[1] one easily
obtains

lim
r1,r2→r0

Φ = Φcirc = lim
E→E0

µ

2
√

m
T (E)

= πµ
[
mW′′ (x0)

]− 1
2 = π

(
U′ (r0)

3U′ (r0) + r0U′′ (r0)

) 1
2

.

As in[1] we consider the differential equation U′ (r) = C (3U′ (r) + rU ′′ (r)),
for r in some interval and C> 0. The solutions are U(r) = arε and U(r) =
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b log r, with ε,a,b , 0 andε > −2. The second case (blog r) can easily be
excluded.

AsΦ does not depend on E, T(E) does not depend on E. HencedT
dE (E0) =

0. From (4), one has

(5) 5W′′′ (x0)
2
− 3W(4) (x0) W′′ (x0) = 0.

As W(x) = ax−ε + µ2

2mx2, we have that x0 =
(
εam
µ2

) 1
ε+2 which, together with

(5), impliesε = −1 or ε = 2. Remember that, in order to have bounded
movements, forε = −1, a < 0, and forε = 2, a > 0.
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