PERIOD AND ENERGY
IN ONE DEGREE OF FREEDOM SYSTEMS

JORGE REZENDE

AsstracT. For one degree of freedom systems there exists a very well
known formula for the periodT() of periodic solutions. In this note we
give a detailed description of the behavior Dfin function of the total
energy E), near a stable equilibrium position of enerfgy. A formula for
g—E(Eo) is established. We illustrate these formulae with two examples. The
second one is a new proof of a Bertrand’s theorem.

1. INTRODUCTION

As it is very well known, a system with one degree of freedom isfiedi
ential equation of the form

(1) mx = —U’ (X),
wherem > 0, U, the potential, is a smooth function &f defined in a real
interval, andx'= %‘ U = ‘(‘j—‘j( Equation () is nothing more than a Newton’s

equation of motion in one dimension. We follow essentially [
If t - x(t) is a solution of {), then

E = E(X(),X(0) = 5X(02+U (x (1),

the energy, is constant.

Let & be such that)’ (¢) = 0. Then,¢ is called an equilibrium position;
t — x(t) = £is a solution of ). We shall assume that” (¢) > 0, which
implies that¢ is a stable equilibrium position. Dendig = E (¢, 0).

Under the above assumption, 6mear and> E,, there are periodic move-
mentst — X (t) aroundé and of energyE. The periodT of such movements

1991 Mathematics Subject Classificatio@OH12.

Key words and phraseOne degree of freedom systems, periodic solutions, Newtonian
dynamics.

Grupo de ksica-Matenatica is supported by the Portuguese Ministry for Science and
Technology (MCT)..

This paper is in final form and no versioq of it will be submitted for publication elsewhere.



2 JORGE REZENDE

is given by

Nl

@) T@=2 [ 2[%(E—U(x))]_ dx

wherex; = X; (E) are the turning points) (x; (E)) = E, i = 1, 2.
In the limit E — E, one obtains the well known formula

2

T(EO)EEILrEOT(E):Zn[%U” (g)]_ .

The object of this note is to study the behaviofdfE) aroundE, (formula
(3)) and computéll (Eo) (formula @)).

In order to illustrate the usefulness of this formula we give two examples.
The second one is another proof of a well known result on the types of central
forces that lead to periodic movements only.

2. THE BEHAVIOR OF T (E) NEAR AN EQUILIBRIUM POSITION

Assume that is of classC", n > 2, and that)” > 0 in[xy, X;]. Define the
functionx — X = ¢ (X), for x € [X, Xo], such that

o) =2, 2,

where+ stands forx > ¢ and - stands forx < &; ¢ is of classC™?! and
¢ (x) = U” (&) U7 U~ (gl))‘% > 0, with & and &, betweené and Xx.
Denote[—Xo, Xo] = ¢ ([X1, X2]) and consider the functioh : [-Xo, Xo] — R,

such that
1

¢ (¢ (X))
The functionf is of classC™2. Denotef’ (X) = 4% (x) = £ and
so on. Fon > 4, and ad)” (£) X = U’ (¢ (X)) f (X), one has

U™ ) 5U" (€)= 3UM (O U” (€)
3U” (&)’ 1207 (&) '
Formula @) can be written

f(X) =

f(0)=1,f(0) = -

f7(0) =

Nl

Xo
T(E):ZIX f(X)

Writing f (X) = 1+ 7 (0) X + 3 (6) X?, for somed € ]-Xo, Xo[, and as

. ) .
- (2(E-Eo)-U" (¢) xz)] dx.

[Oefiee-er-v@a]| o= DT ey,
X |M U~ (é)?
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one has
(3) T(E)-T(E)) =0 ”‘/mg (E-Eo),
U (£)2
for someo € f” ([—Xo, Xo]).
Hence
(4)

T m (N2 _ 4 ”
T'(Eo)Eg—E(Eo):f”(O) ”\/m :m/r—n(w (6)° -39 U (5))_

AGL 120" (¢)?

Example 1. Consider a mathematical pendulum of length | under the free
fall acceleration g. The potential is (X) = —|9 cosx, where x is the angle of
deviation of the pendulum from the vertical.

_1
In this casep (x) = 2sin3 and f(X) = 2(4— Xz) *. Simple calculations
show that formuld3) becomes

1 1+2(sin§)2
4 4(005%)5 ’

2
T(E)-T(Ep) = Z(m\/g(sin%) , for somer €

where ¥ is the maximum deviation angle.

Example 2. The following example is another proof of a Bertrand’s theorem.
We follow partially[1], Chapter 2§ 8.D. See als§2?], page 51 and4], page
90. The original proof is if3].

Let U be the potential of a central forcg, the angular momentum and

. . 2 . .
V the gfective potential, \(r) = U (r) + 5=—, where t— r (t) is the radial
movement. Assume that there are periodic radial movements andyttsat r
a minimum for V. Then & rg is a stable circular orbit. Let t— r (t) be a
periodic radial movement the angle between a pericenter and an apocenter
which are adjacent and let land r, be the distances from the pericenters and

the apocenters to the center of the field,<«r ro < r,. Making the change
2
X=X =1, %=2%=,WH=U ()—1()+ 5mX°, one hasp = 54T (E),

r
where T(E) is as in(2) with LOJ replaced by W and m dy Asin[1] one easily
obtains

. _ T M
rl,lr!zm)r()@ - (I)CII’C - Ell—r;[go 2\/r—nT (E)

o U’ (ro) :
= \'A 2 = .
(W ()] ”(3u' (o) + roU” (ro))
As in[1] we consider the dfierential equation U(r) = C (3U’ (r) + rU” (r)),
for r in some interval and C- 0. The solutions are {r) = ar® and U(r) =
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blogr, with e,a,b # 0 ande > —2. The second case [iigr) can easily be
excluded.

As® does not depend on E,(E) does not depend on E. Hen%(Eo) =
0. From(4), one has

(5) BW” (%0)% = 3W@ (%) W (xo) = 0.

1

As W(X) = ax® + ’Z%XZ, we have that x= (‘i‘j‘—zm)2 which, together with
(5), impliese = -1 or ¢ = 2. Remember that, in order to have bounded
movements, far = -1, a< 0, and fore = 2, a > 0.
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